Aspects of the q–deformed Fuzzy Sphere

نویسنده

  • Harold Steinacker
چکیده

These notes are a short review of the q–deformed fuzzy sphere S2 q,N , which is a “finite” noncommutative 2–sphere covariant under the quantum group Uq(su(2)). We discuss its real structure, differential calculus and integration for both real q and q a phase, and show how actions for Yang–Mills and Chern–Simons–like gauge theories arise naturally. It is related to D-branes on the SU(2)k WZW model for q = exp( iπ k+2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Field Theory on the q–deformed Fuzzy Sphere

We discuss the second quantization of scalar field theory on the q–deformed fuzzy sphere S2 q,N for q ∈ IR, using a path–integral approach. We find quantum field theories which are manifestly covariant under Uq(su(2)), have a smooth limit q → 1, and satisfy positivity and twisted bosonic symmetry properties. Using a Drinfeld twist, they are equivalent to ordinary but slightly “nonlocal” QFT’s o...

متن کامل

Field Theory on the q – Deformed Fuzzy Sphere

We study the q–deformed fuzzy sphere, which is related to D-branes on SU(2) WZW models, for both real q and q a root of unity. We construct for both cases a differential calculus which is compatible with the star structure, study the integral, and find a canonical frame of one–forms. We then consider actions for scalar field theory, as well as for Yang–Mills and Chern–Simons–type gauge theories...

متن کامل

Fuzzy Torus and q-Deformed Lie Algebra

It will be shown that the defining relations for fuzzy torus and deformed (squashed) sphere proposed by J. Arnlind, et al (hep-th/0602290) can be rewriten as a new algebra which contains q-deformed commutators. The quantum parameter q (|q| = 1) is a function of ~. It is shown that the q → 1 limit of the algebra with the parameter μ < 0 describes fuzzy S and that the squashed S with q 6= 1 and μ...

متن کامل

Field Theory on the q–deformed Fuzzy Sphere II: Quantization

We study the second quantization of field theory on the q–deformed fuzzy sphere for q ∈ R. This is performed using a path integral over the modes, which generate a quasiassociative algebra. The resulting models have a manifest Uq(su(2)) symmetry with a smooth limit q → 1, and satisfy positivity and twisted bosonic symmetry properties. A systematic way to calculate n–point correlators in perturb...

متن کامل

ON ( $alpha, beta$ )-FUZZY Hv-IDEALS OF H_{v}-RINGS

Using the notion of “belongingness ($epsilon$)” and “quasi-coincidence (q)” of fuzzy points with fuzzy sets, we introduce the concept of an ($ alpha, beta$)- fuzzyHv-ideal of an Hv-ring, where , are any two of {$epsilon$, q,$epsilon$ $vee$ q, $epsilon$ $wedge$ q} with $ alpha$ $neq$ $epsilon$ $wedge$ q. Since the concept of ($epsilon$, $epsilon$ $vee$ q)-fuzzy Hv-ideals is an important and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001